Chapter

MATRIX ALGEBRA
AND RANDOM VECTORS

2.1 Introduction

We saw in Chapter 1 that multivariate data can be conveniently displayed as an
array of numbers. In general, a rectangular array of numbers with, for instance, n
rows and p columns is called a matrrix of dimension n X p. The study of multivariate
methods is greatly facilitated by the use of matrix algebra.

The matrix algebra results presented in this chapter will enable us to concisely
state statistical models. Moreover, the formal relations expressed in matrix terms
are easily programmed on computers to allow the routine calculation of important
statistical quantities.

We begin by introducing some very basic concepts that are essential to both our
geometrical interpretations and algebraic explanations of subsequent statistical
techniques. If you have not been previously exposed to the rudiments of matrix al-
gebra, you may prefer to follow the brief refresher in the next section by the more
detailed review provided in Supplement 2A.

2.2 Some Basics of Matrix and Vector Algebra

Vectors
An array x of n real numbers x;, x5, ..., x, is called a vector, and it is written as
X1
X= x:Z or X' = [x,x,...,%,]
xll

where the prime denotes the operation of transposing a column to a row.
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x Figure 2.1 The vector x’ = [1,3,2].

A vector x can be represented geometrically as a directed line in n dimensions
with component x; along the first axis, x, along the second axis, ..., and x, along the
nth axis. This is illustrated in Figure 2.1 for n = 3.

A vector can be expanded or contracted by multiplying it by a constant c. In
particular, we define the vector cx as

That is, cx is the vector obtained by multiplying each element of x by c. [See
Figure 2.2(a).]

2
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Figure 2.2 Scalar multiplication and vector addition.
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Two vectors may be added. Addition of x and y is defined as

x) » X+ ¥y

X X, +
xty=|"2l4 ]| 2T

X, Yn Xyt Yu

so that x + y is the vector with ith element x; + y;.

The sum of two vectors emanating from the origin is the diagonal of the paral-
lelogram formed with the two original vectors as adjacent sides. This geometrical
interpretation is illustrated in Figure 2.2(b).

A vector has both direction and length. In n = 2 dimensions, we consider the

vector
x)
x =
X3

The length of x, written L,, is defined to be
Ly=Vx3+x}

Geometrically, the length of a vector in two dimensions can be viewed as the
hypotenuse of a right triangle. This is demonstrated schematically in Figure 2.3.
The length of a vector X' = [x,, x,,..., x,,], with n components, is defined by

sz\//x%+x%+-~'+x,2, (2'1)

Multiplication of a vector X by a scalar ¢ changes the length. From Equation (2-1),

Ly = \/czxf + 23+ + B

=[c|Vxf+ 3+ + 2l =c|Ly

Multiplication by ¢ does not change the direction of the vector x if ¢ > 0.
However, a negative value of ¢ creates a vector with a direction opposite that of x.
From

ch = ’C 'Ll (2'2)

it is clear that x is expanded if |¢| > 1 and contracted -if 0 < |[¢| < 1. [Recall
Figure 2.2(a).] Choosing ¢ = L;!, we obtain the unit vector L7'x, which has length 1
and lies in the direction of x.

L= VATF R
2
Figure 2.3
> % Lengthofx = Vx} + x3.
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Figure 2.4 The angle 6 between
X' =[x, x]andy’ = [», y2].

A second geometrical concept is angle. Consider two vectors in a plane and the
angle 8 between them, as in Figure 2.4. From the figure, 6 can be represented as
the difference between the angles 6; and 6, formed by the two vectors and the first
coordinate axis. Since, by definition,

005(91) = % 005(02) = %l—
x y

sin(8;) = {% sin(6,) = L&
y

d
* cos (8) = cos{(6, ~ 0;) = cos(6) cos(6;) + sin (6,) sin (8,)

the angle 0 between the two vectors X' = [x;, x;] and y’ = [y, ] is specified by

cos(6) = cos(6, — 6;) = (—Z—I;) (—Zi) + (L&) (%’-) - ﬂ&L“LLﬂ (2-3)
x Yy X x Loy

We find it convenient to introduce the inner product of two vectors. For n = 2
dimensions, the inner product of x and y is

X'y =y + nn

with this definition and Equation (2-3),

[

XYy

Xy
Ly, \/;; Vy'y

gince cos(90°) = cos(270°) = 0 and cos(#) =0 only if Xy =0, x and y are
perpgndicular when x'y = 0.
For an arbitrary number of dimensions #n, we define the inner product of x

andyas

L,=Vxx cos(f) =

X

XY= xiy+ 0yt + xy, (2-4)

The inner product is denoted by either X'y or y'x.
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Using the inner product, we have the natural extension of length and angle to
vectors of n components:

L, = lengthof x = Vx'x (2-5)

'

Xy x'y
L.,L, VX'x Vy'y

Since, again, cos (6) = 0 only if X'y = 0, we say that x and y are perpendicular
whenx'y = 0.

cos(8) = (2-6)

Example 2.1 (Calculating lengths of vectors and the angle between them) Given the
vectors x’ = [1,3,2] and y' = [-2,1, —1], find 3x and x + y. Next, determine
the length of x, the length of y, and the angle between x and y. Also, check that
the length of 3x is three times the length of x.

First,
1 3
3x=3/3|=(9
2 6
1 -2 1-2 -1
x+y=|3]|+ 1(=(3+1|=| 4
2 ~-1 2-1 1

Next, x'x =1+ 32 +22=14, yy=(-2)2+ 2+ (-1)2=6, and x'y =
1(=2) + 3(1) + 2(-1) = —1. Therefore,

L, = Vx'x = V14 = 3,742 L,=Vyys= V6 = 2.449
and
x'y -1

cos(0) = 7 1. = 3743 x 2445

~.109

so 6 = 96.3°. Finally,
Ly, = V3 + 9 +6 = Vi26 and 3L, =3VI4 = VI2%
showing L3, = 3L,. ]

A pair of vectors x and y of the same dimension is said to be linearly dependent
if there exist constants ¢; and ¢;, both not zero, such that

ax + 0y = 0
A set of vectors Xy, X,, . . ., X is said to be linearly dependent if there exist constants
€1, Ca, - - -, Ck, DOt all zero, such that
C1X1+C2x2+"'+(.‘kx,(=0 (2-7)

Linear dependence implies that at least one vector in the set can be written as a
linear combination of the other vectors. Vectors of the same dimension that are not
linearly dependent are said to be linearly independent.
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Example 2.2 (ldentifying linearly independent vectors) Consider the set of vectors

1 1 1
X1=12| x= 0 x3=| -2
- 1 ~1 1
Setting
cX; + x5 +c3Xx3=0
implies that

g+t =0
2¢, ~26=0
cg—¢c+t =0
with the unique solution ¢; = ¢, = ¢3 = 0. As we cannot find three constants ¢; , c,,

and c¢;, not all zero,such that ¢, x; + ¢; x; + ¢3x3 = 0, the vectors x;, X,, and x; are
linearly independent. n

The projection (or shadow) of a vector x on a vector y is

@y, _ 1

Projectionof xony = y y 2-8
Yy Z, L (2-8)
where the vector Ly_ly has unit length. The length of the projection is
Length of projection = [x'yl = L, Xy = Ly|cos(8)| (29
L, LL, X

where 6 1is the angle between x and y. (See Figure 2.5.)

X'y
(ry) y
fe———1, cos () —>] Figure 2.5 The projection of x on y.

Matrices

A matrix is any rectangular array of real numbers. We denote an arbitrary array of n
rows and p columns by

a1 4 - arp
ay a4y - a
A =72 T2 T T
(nXxp) : :

ayy Qpy 0 Qup
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Many of the vector concepts just introduced have direct generalizations to matrices.

The transpose operation A’ of a matrix changes the columns into rows, so that
the first column of A becomes the first row of A’, the second column becomes the
second row, and so forth.

Example 2.3 (The transpose of a matrix) If
3 -1 2
A =
(2x3) |:1 5 4:|

3

then

’

Gx2)

A matrix may also be multiplied by a constant c. The product cA is the matrix
that results from multiplying each element of A by c. Thus

ca;y cayp; e ca“,

ca ca ceroca
cA = |t 2
(nxp) :

Capy Capy - ca,,p

Two matrices A and B of the same dimensions can be added. The sum A + B has
(i, ])th entry a,-]- + b,]

Example 2.4 (The sum of two matrices and multiplication of a matrix by a constant)

If
0 31 1 -2 -3
A = =
(2x3) '71 -1 1] and (2]33) ':2 5 lil
0 12 4
4A =
(2%3) [4 -4 4} and

A+B=0+1 3—21—3=11—2
(2x3)  (2x3) 1+2 -1+5 1+1 3 4 2

It is also possible to define the multiplication of two matrices if the dimensions
of the matrices conform in the following manner: When A is (n X k) and B is
(k X p), so that the number of elements in a row of A is the same as the number of
elements in a column of B, we can form the matrix product AB. An element of the
new matrix AB is formed by taking the inner product of each row of A with each
column of B.

then
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The matrix product AB is

A B = the(n X p) matrix whose entry in the ith row
(m<k(kxp)  and jth column is the inner product of the ith row
of A and the jth column of B

k
(l,]) entry of AB = ailblj + a,»zsz + o0+ aikbkj = 2 aifbt’j (2-10)
=1

When k& = 4, we have four products to add for each'entry in the matrix AB. Thus,

a5 42 apz; a4y
: : : : by bip
- bZl pr
A B =@ a; a3 dyg b b
(nx4)(4xp) : : . : 31 3p
: : : : by, b,
P

451 GQn2 Qy3 Qg

Column

J

Rowi "'(ailblj + apbyj + apbsyj + ai4b41‘)"'

Example 2.5 (Matrix multiplication) If

-2
3 -1 2 2 0
A—|:1 s J, B=| 7| and c—[l _J

L9
then
-2
A B 2[ -1 2} ; =[3(—2>+(—1><7>+2(9)}
(2x3)(3x1) 1 5 4 9 1(-2) + 5(7) + 4(9)
|5
T 69
(2x1)
and

203—12
1 1 5 4

[2(3) +0(1) 2(-1) +0(5) 2(2) + 0(4)}

(2x2

1(3) - 1(1) 1(=1) - 1(5) 1(2) - 1(4)

6

2
(2x3 ||
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When a matrix B consists of a single column, it is customary to use the lower-
case b vector notation.

Example 2.6 (Some typical products and their dimensions) Let

7 5
1 -2 3 2
N T R -
- 9
2 4 -1 . 4

Then Ab,bc’,b’c, and d’A b are typical products.

7
1 -2 3 31
4 -1 —4
2 6
The product A b is a vector with dimension equal to the number of rows of A.
5
b'e=[7 -3 6]| 8 |=[-13]
-4

The productb’cisal X 1 vector or a single number, here —13.

7 35 56 -28
be' =|-3|[5 8 —4]=|-15 —24 12
6 30 48 -24

The product b¢’ is a matrix whose row dimension equals the dimension of b and
whose column dimension equals that of ¢. This product is unlike b’c, which is a
single number.

7
d'Ab =[2 9][; _i _i’] -3 | = [26]
6

The product d’A b is a1 X 1 vector or a single number, here 26. L

Square matrices will be of special importance in our development of statistical
methods, A square matrix is said to be symmetric if A = A’ or a;; = a;; for all {
and j.
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Example 2.7 (A symmetric matrix) The matrix

B
B

is not symmetric. . ™

is symmetric; the matrix

When two square matrices A and B are of the same dimension, both products
AB and BA are defined, although they need not be equal. (See Supplement 2A.)
If we let I denote the square matrix with ones on the diagonal and zeros elsewhere,
it follows from the definition of matrix multiplication that the (i, j)th entry of
Al is a,~1><0+---+al~,j_1><0+a,~jx1+a,~,j+1><0+--~+a,-kX0=a,-j, SO
Al = A.Similarly,IA = A, so

I A = A I = A forany A (2-11)
(kxXk)(kxk)  (kxk)(kXk)  (kXk) (kxk)

The matrix I acts like 1 in ordinary multiplication (1-a = a-1-= a), so it is
called the identity matrix.

The fundamental scalar relation about the existence of an inverse number a™
such that a'a =-aa™! = 1 if a # 0 has the following matrix algebra extension: If
there exists a matrix B such that

1

B A = A B =1
(kxk)(kxk)  (kxk)(kxk)  (kxk)

then B is called the inverse of A and is denoted by A™%.
The technical condition that an inverse exists is that the k columns a,, a,, ..., a;
of A are linearly independent. That is, the existence of A™! is equivalent to

cia; + ay + -+ qag =0 onlyif ¢g= - =¢ =0 (2-12)

(See Result 2A.9 in Supplement 2A.)

Example 2.8 (The existence of a matrix inverse) For
32
A=

(-2)3 + (4)4  (—2)2 + (4)1
(8)3 + (—6)4 (8)2 + (—6)1

o)

you may verify that

el
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SO

is A™l. We note that

SHEEHEH

implies that ¢, = ¢; = 0, so the columns of A are linearly independent. This
confirms the condition stated in (2-12). L]

A method for computing an inverse, when one exists, is given in Supplement 2A.
The routine, but lengthy, calculations are usually relegated to a computer, especially
when the dimension is greater than three. Even so, you must be forewarned that if
the column sum in (2-12) is nearly 0 for some constants ¢y, ..., ¢;, then the computer
may produce incorrect inverses due to extreme errors in rounding. It is always good
to check the products AA™ and A™'A for equality with I when A™! is produced by a
computer package. (See Exercise 2.10.)

Diagonal matrices have inverses that are easy to compute. For example,

-1 -
— 0 0 0 0
a1

1

a; O 0 0 0 0 P 0 0 0

0 @ 0 0 O 2 .

0 0 a3 0 O has inverse 0 0 P 0 0

0 0 0 a4 O 33 )

0 0 0 0 ass 0 0 0 — 0

Q44
I
0 0 0 —
L ass |

if all the a;; # 0.
Another special class of square matrices with which we shall become familiar
are the orthogonal matrices, characterized by

QQ'=QQ=1I or Q' =0Q (2-13)

The name derives from the property that if Q has ith row g}, then QQ’ = Iimplies
that g;q; = 1 and qiq; = O for i # j, so the rows have unit length and are mutually
perpendicular (orthogonal). According to the condition Q'Q = I, the columns have
the same property.

We conclude our brief introduction to the elements of matrix algebra by intro-
ducing a concept fundamental to multivariate statistical analysis. A square matrix A
is said to have an eigenvalue A, with corresponding eigenvector x # 0, if

Ax = Ax (2-14)
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Ordinarily, we normalize x so that it has length unity; that is, 1 = x'x. It is
convenient to denote normalized eigenvectors by e, and we do so in what follows.
Sparing you the details of the derivation (see [1]), we state the following basic result:

Let A be a k X k square symmetric matrix. Then A has k pairs of eigenvalues
and eigenvectors namely,

Al? € Az, e ... Ak! € (2-15)

The eigenvectors can be chosen to satisfy 1 = eje; = --- = e;e; and be mutually
perpendicular. The eigenvectors- are unique unless two or more eigenvalues
are equal.

Example 2.9 (Verifying eigenvalues and eigenvectors) Let

[

Then, since
1 1
1 -5 V2| _ 6 V2
R | P 1
V2 V2
A; = 6 is an eigenvalue, and
1
V2
e =
_L
V2

is its corresponding normalized eigenvector. You may wish to show that a second
eigenvalue—eigenvector pair is A; = —4, &5 = [1/V2, 1/V2]. =

A method for calculating the A’s and e’s is described in Supplement 2A. It is in-
structive to do a few sample calculations to understand the technique. We usually rely
on a computer when the dimension of the square matrix is greater than two or three.

2.3 Positive Definite Matrices

The study of the variation and interrelationships in multivariate data is often based
upon distances and the assumption that the data are multivariate normally distributed.
Squared distances (see Chapter 1) and the multivariate normal density can be
expressed in terms of matrix products called quadratic forms (see Chapter 4).
Consequently, it should not be surprising that quadratic forms play a central role in
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multivariate analysis. In this section, we consider quadratic forms that are always
nonnegative and the associated positive definite matrices.

Results involving quadratic forms and symmetric matrices are, in many cases,
a direct consequence of an expansion for symmetric matrices known as the
spectral decomposition. The spectral decomposition of a k X k symmetric matrix
A is given by!

A =X e e +A e e +--+ A e e (2-16)
(kxk) (kx1)(1xk) (kx1)(1xk) (kx1)(1xk)
where A, Ay, - .., A are the eigenvalues of A and ey, e, ..., e, are the associated

normalized eigenvectors. (See also Result 2A.14 in Supplement 2A). Thus, eje; = 1
fori =1,2,...,k,and eje; = Ofori # j.

Example 2.10 (The spectral decomposition of a matrix) Consider the symmetric matrix

13 -4 2
A=|-4 13 =2
2 -2 10

The eigenvalues obtained from the characteristic equation | A —~ AI| = 0 are
A1 =9, A; = 9, and A; = 18 (Definition 2A.30). The corresponding eigenvectors
e;,e;, and e3 are the (normalized) solutions of the equations Ae; = Ae; for
i =1,2,3.Thus, Ae; = Aej gives

13 -4 2 1 €11
-4 13 -2 €1 =9 €71
2 =2 10 €31 €31

or
13e;; — 4dey + 2e3; = ey,
~4e;y + 13e5; ~ 2e3; = 9ey;
2e;; — 2e31 + 10e3; = 9e3;

Moving the terms on the right of the equals sign to the left yields three homogeneous
equations in three unknowns, but two of the equations are redundant. Selecting one of
the equations and arbitrarily setting e;; = 1 and e,; = 1, we find that e;; = 0. Con-
sequently, the normalized eigenvector is €] = [1/\/12 + 12 + 02, I/ V2 + I + 02,

2+ 12+ 02] =[1/V2,1/V2,0], since the sum of the squares of its elements
is unity. You may verify that e} = [1/V18, —1/V18, —4/V/18] is also an eigenvector
for 9 = A,, and e3 = [2/3, —2/3, 1/3] is the normalized eigenvector corresponding
to the eigenvalue A; = 18. Moreover, eje; = 0 fori # j.

'A proof of Equation (2-16) is beyond the scope of this book. The interested reader will find a proof
in [6], Chapter 8.
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The spectral decomposition of A is then

A= /\lele’l + /\2020'2 + /\3e3e'3

or
1
13 -4 2] V32 i 1
-4 13 —2|=9| 1 [———0}
2 -2 10 V2 V2 V2
0
1 2
V18 3 .
sol 2L (] A 2L A gl 222 2L
Vig || VI8 Vi Vis 31{3 3 3
4 1
18 3
1 1 4
11, 18 18 18
22 1 1 4
= + - — —
? % % ol 8 1 1=
000 4416
18 18 18

OIN WA O|A

+ 18

)
OIN Wlh VA

|
W= WM O

as you may readily verify.

The spectral decomposition is an important analytical tool. With it, we are very
easily able to demonstrate certain statistical results. The first of these is a matrix
explanation of distance, which we now develop.

Because X' A X has only squared terms x? and product terms x;x,, it is called a
quadratic form. When a k X k symmetric matrix A is such that

0 =x'Ax (2-17)
forallx’ =[x, x3,..., x], both the matrix A and the quadratic form are said to be
nonnegative definite. If equality holds in (2-17) only for the vectorx’ = [0,0,...,0],
then A or the quadratic form is said to be positive definite. In other words, A is
positive definite if

0 < x'Ax (2-18)

for all vectors x # 0.
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Example 2.11 (A positive definite matrix and quadratic form) Show that the matrix
for the following quadratic form is positive definite:
3x} + 2x3 — 2V2 xyxy *

To illustrate the general approach, we first write the quadratic form in matrix

notation as
3 V2 ||x ,
[ ‘2][-\@ 2} Lz] = xAx

By Definition 2A.30, the eigenvalues of A are the solutions of the equation
|A = AL| =0,0r (3 —A)(2 - A) — 2 = 0. The solutions are A; = 4 and A; = 1.
Using the spectral decomposition in (2-16), we can write

A = /\lel ei + /\zez eé
(2x2) (2X1)(1x2) (2Xx1)(1x2)

= 4e; e + e; e
(2X1)(1%2)  (2X1)(1X2)
where e; and e, are the normalized and orthogonal eigenvectors associated with the
eigenvalues A; = 4 and A, = 1, respectively. Because 4 and 1 are scalars, premulti-
plication and postmultiplication of A by x’ and x, respectively, where x’ = [x;, x;] is
any nonzero vector, give
X A x = 4" e e x + X e e x
(1x2)(2x2)(2x1) (1x2)(2X1)(1x2)(2X1) (1x2)(2x1)(1x2)(2X1)

4yt + y3=0
with
y =Xx'e; =ejX and p =Xx'e; =exx
We now show that y; and y are not both zero and, consequently, that

x'Ax = 4y} + y2 > 0, or A is positive definite.
From the definitions of y and y,, we have

L]

y = E x
(2x1) (2X2)(2X1)

or

Now E is an orthogonal matrix and hence has inverse E’. Thus,x = E’y. But xisa
nonzero vector, and 0 # x = E'y implies that y # 0. ]

Using the spectral decomposition, we can easily show that a ¥ X k symmetric
matrix A is a positive definite matrix if and only if every eigenvalue of A is positive.
(See Exercise 2.17.) A is a nonnegative definite matrix if and only if all of its eigen-
values are greater than or equal to zero.

Assume for the moment that the p elements x,, x,,..., X, of a vector x are
reali;ations of p random variables X;, Xa,-.., X,. As we pointed out in Chapter 1,
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we can regard these elements as the coordinates of a point in p-dimensional space,
and the “distance” of the point [x;, X,..., x,p]' to the origin can, and in this case
should, be interpreted in terms of standard deviation units. In this way, we can
account for the inherent uncertainty (variability) in the observations. Points with the
same associated “uncertainty” are regarded as being at the same distance from

the origin. -
If we use the distance formula introduced in Chapter 1 [see Equation (1-22)],

the distance from the origin satisfies the general formula
(distance)? = ay,xf + a0+ + appxl

+ 2@ + oagsnxy + oo+ ap1 pXp-1Xp)

provided that (distance)® > oOforall [xy, xz,...,x,] # [0,0,...,0]. Setting a;; = a;;,
i#zj,i=12,...,p,]= 1,2,..., p, we have

a; a,; o ap X
; @) G "0 4 x
0 < (distance)? = [x1, %z, Xp]| 2 p 2
ap1 Qp2 app | Lxp
or
0 < (distance)’ = xXAx  forx # 0 (2-19)

From (2-19), we see that the p X p symmetric matrix A is positive definite. In
sum, distance is determined from a positive definite quadratic form x'Ax. Con-
versely, a positive definite quadratic form can be interpreted as a squared distance.

Comment. Let the square of the distance from the point X' = [x;, x3,..., Xp]
to the origin be given by X'Ax, where A isa p X p symmetric positive definite
matrix. Then the square of the distance from X to an arbitrary fixed point
g =B pos ., ip] is given by the general expression (x — p) A(x — p).

Expressing distance as the square root of a positive definite quadratic form al-
lows us to give a geometrical interpretation based on the eigenvalues and eigenvec-
tors of the matrix A. For example, suppose p = 2. Then the points X’ = [xy, x;] of
constant distance ¢ from the origin satisfy

xXAx = a“xf + azzxg + 2ay,x,x; = 2
By the spectral decomposition, as in Example 2.11,
, 2
A = Ajee] + Aee) S0 X'Ax = A(x'e))” + M(x'e;)’

Now, @ = A1y} + A3 is anellipse in y; = x'e; and y, = x'e; because A, 4; > 0
when A is positive definite. (See Exercise 2.17.) We easily verify that x = cA;?e,
satisfies X' Ax = /\,(c)qlﬂe’lel)z = . Similarly, x = cA3'e, gives the appropriate
distance in the e, direction. Thus, the points at distance c lie on an ellipse whose axes
are given by the eigenvectors of A with lengths proportional to the reciprocals of
the square roots of the eigenvalues. The constant of proportionality is c. The situa-

tion is illustrated in Figure 2.6.
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™)

€

€

. S S 1]

Figure 2.6 Points a
constant distance ¢
from the origin
(P=21=2<Ay).

If p > 2, the points x' = [x, xz, ., xpla constant distance c = Vx'Ax from
the origin lie on hyperellipsoids ¢? = Al(x el) + -+ AKX ep) whose axes are
given by the eigenvectors of A.The half-length in the direction e; is equal to ¢/ VA,
i=1,2,..., p,where A1, A,,..., A, are the eigenvalues of A.

2.4 A Square-Root Matrix

The spectral decomposition allows us to express the inverse of a square matrix in
terms of its eigenvalues and eigenvectors, and this leads to a useful square -root
matrix.
Let A bea k x k positive definite matrix with the spectral decomposition
k

= E A;eie;. Let the normalized eigenvectors be the columns of another matrix
i=1
P = [e;,e;...,e.]. Then

k
2 P A P (2-20)
i=1

(kxk) (kxl)(lxk) (kxk)(kxk)(kxk)

where PP’ = P’'P = I and A is the diagonal matrix

A O - 0
0 A
=|. "2 with A; > 0
(kxk) :

0 0 - A
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Thus,

k
Al =PAlP = 2% ee] (2-21)
=1 "

since (PAT'P')PAP' = PAP'(PA™'P’) = PP’ =11
Next, let AI/2 denote the diagonal matrix with \/— as the ith diagonal element.
The matrix 2 VA e;e; = PAY2P' is called the square root of A and is denoted by
s
A2,

The square-root matrix, of a positive definite matrix A,
k
A2 = % VX, ee; = PAZP (2:22)
i=1

has the following properties:
1. (AY2) = A2 (that is, A2 is symmetric).

2. AZA2 = A

k
3. (AT =Y % eie; = PATV2P’ where A~V2is a diagonal matrix with
i=1 ]
1/V; as the ith diagonal element.
4. AVPATI2 = APAV? = 1and AVPAT2 = AL, where A2 = (A1)

2.5 Random Vectors and Matrices

A random vector is a vector whose elements are random variables. Simifarly, a
random matrix is a matrix whose elements are random variables. The expected value
of a random matrix (or vector) is the matrix (vector) consisting of the expected
values of each of its elements. Specifically, let X = {X;;} be an n X p random
matrix. Then the expected value of X, denoted by £(X), is the n X p matrix of
numbers (if they exist)

E(X11) E(Xi2) - E(Xip)

E(le) E().(zz) E("YZp)

EX) = (2:23)

E(Xw) E(Xm) ~ E(Xny)
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where, for each element of the matrix,?
o0
/ x;; fii(xi;) dxi if X; is a continuous random variable with
~o probability density function f;;(x;;)
E(Xy) =
if X;;is a discrete random variable with
> x;Pif(Xi)) probability function p; ;(x;;)

all x;;

Example 2.12 (Computing expected values for discrete random variables) Suppose
p =2 and n = 1, and consider the random vector X' = [ X}, X;]. Let the discrete
random variable X have the following probability function:

x; . -1 0
pi(xy) i 3 3 4

Then E(X1) = 3, xipi(x) = (—1)(3) + (0)(3) + (1)(4) = L.

allx;

Similarly, let the discrete random variable X, have the probability function

x, |0 1
pa(x2) [~8 2

Then E(X;) = 2, xap5(x;) = (0)(:8) + (1)(:2) = .2.

all xy
E(Xl):| [1}
EX) = =

X) I:E(Xz) 2 =
Two results involving the expectation of sums and products of matrices follow
directly from the definition of the expected value of a random matrix and the univariate
properties of expectation, E(X; + ¥;) = E(X;) + E(Y;) and E(cX;) = cE(Xy).
Let X and Y be random matrices of the same dimension, and let A and B be

conformable matrices of constants. Then (see Exercise 2.40)

Thus,

E(X +Y) = E(X) + E(Y) (2-24)
E(AXB) = AE(X)B

2If you are unfamiliar with calculus, you should concentrate on the interpretation of the expected
value and, eventually, variance. Our development is based primarily on the properties of expectation
rather than its particular evaluation for continuous or discrete random variables.
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2.6 Mean Vectors and Covariance Matrices

Suppose X' = [X7, X;,..., X,]isa p X 1 random vector. Then each element of X is a
random variable with its own marginal probability distribution. (See Example 2.12.) The
marginal means u; and variances o7 are defined as u; = E(X;)ando? = E(X; — )2,
i = 1,2,..., p, respectively. Specifically,

/ x; fi( x) dx; if X;is a continuous random variable with probability

—o00 density function fi(x;)

i =9 _
if X;is a discrete random variable with probability
> xipi(x) function p;(x;)
\ allx;
/ (x; — ma)?filxs) dx; if X;is a continuous random variable (2-25)
—o0 with probability density function fi(x;)
2
g =
5 if X; is a discrete random variable
? (x; — )" pi(x:) with probability function p;(x;)
\ all x;

It will be convenient in later sections to denote the marginal variances by o;; rather
than the more traditional o7, and consequently, we shall adopt this notation.

The behavior of any pair of random variables, such as X; and X, is described by
their joint probability function, and a measure of the linear association between
them is provided by the covariance

ok = E(X; — wi) (Xy — i)

/ / (xi — i) (xp — i) fin(x;, xp)dx; dx,  if X;, Xy are continuous
T S random variables with
the joint density
.y, function f;x(x;, xi)
E E (xi = i) (xp = i) Pin( i, xx) if X;, X, are discrete
all x; ail x;, random variables with
L joint probability
function p;(x;, xi)
(2-26)
and u; and puy, i,k = 1,2,..., p, are the marginal means. When i = k, the covari-
ance becomes the marginal variance.
More generally, the collective behavior of the p random variables X, X3, ..., X,
or, equivalently, the random vector X' = [X;, X;,..., X, ], is described by a joint

probability density function f(x;, x,..., x,) = f(x). As we have already noted in
this book, f(x) will often be the multivariate normal density function. (See Chapter 4.)

If the joint probability P[X; = x;and X, =< x;] can be written as the product of
the corresponding marginal probabilities, so that

P[X; = xjand X =< x;] = P[X; = x)P[X; < x;] 2-27)
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for all pairs of values x;, x;, then X; and X} are said to be statistically independent.
When X; and X are continuous random variables with joint density f;,(x;, x,) and
marginal densities f;(x;) and f;(x,), the independence condition becomes

Sir(xi, xi) = filx) fi(xe)

for all pairs (x;, x;).
The p continuous random variables X;, Xa,..., X, are mutually statistically
independent if their joint density can be factored as

le---p(xl’ X25eens Jfp) = filx1)fa(x) - ‘fp(xp) (2-28)

for all p-tuples (x;, x3,..., X,).
Statistical independence has an important implication for covariance. The
factorization in (2-28) implies that Cov (X;, X)) = 0. Thus,

Cov(X;, Xx) =0 if X; and X are independent (2-29)

The converse of (2-29) is not true in general; there are situations where
Cov(X;, X;) = 0,but X; and X, are not independent. (See [5].)

The means and covariances of the p X 1 random vector X can be set out as
matrices. The expected value of each element is contained in the vector of means
p = E(X), and the p variances o;; and the p(p — 1)/2 distinct covariances
oix(i < k) are contained in the symmetric variance-covariance matrix
3 = E(X — pu)(X — p)'. Specifically,

E(Xl) My
Ex)=| FED o]y, (230)
E(Xp) Hp
and
2=EX-p)(X-p)
X1 —
=F XZ_M [Xl—#l,Xz_;lq,..‘,Xp—[Lp]
Xp— Hp
[ (- w)? (X1 = m) (X2 = ) - (X1 = ) (X, = )
- E (X — M).(Xl - t) (X2 - ) (X2 - I‘LZ)'(Xp - p)
_.(Xp - .u'p)(Xl - .u'l) (Xp - .u'p) (XZ - ”’Z) (Xp - .""p)2
E(X — #1)2 E(X, — m) (X2 — ) -+ E(X — #1)(Xp - #p)
_| E(Xy - M?(Xl -m) E(X; — pp)? E(X, - IJQ_)(Xp — Hp)

E(Xp - I'Lp)(Xl - ,lLl) E(Xp ot I‘Lp)(XZ — ”’Z) E(Xp _ #p)Z
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or
o117 012 "t O1p
o 0y O
% =Cov(X)=| 2 "2 . " (2-31)
- Op1 Op2 ° Opp

Example 2.13 (Computing the covariance matrix) Find the covariance matrix for
the two random variables X and X, introduced in Example 2.12 when their joint
probability function p;,(x;, X;) is represented by the entries in the body of the
following table:

X
X 0 1 pi(x1)
-1 24 06 3
0 .16 14 3
1 .40 .00 4
Pa(x2) 8 2 1

We have already shown that u;, = E(X;) = .1 and uy = E(X;) = .2. (See Exam-
ple 2.12.) In addition,

o = E(X — ) = 2 (1~ 1)Pp(x)

all xy

= (1= 1)%(3) + (0 = 1)A(3) + (1 - 1)*(4) = 69

02 = E(X; — wp)? = (x2 = 2)*py(x3)

all x5

(0 — .2)%(.8) + (1 — .2)%(.2)

= .16

E(X, — ) (X2 — ) = > (= 1)(x = 2)pia(n, x)

a)l pairs (x g, xp)

012
= (=1 - .1)(0 — .2)(24) + (-1 = .1)(1 - .2)(.06)
+- 4+ (1 - 1)(1 - .2)(.00) = —.08

o = E(X; — wp)(X) — ) = E(X; — w)(X, — ) = 05 = —.08
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Consequently, with X' = [X;, X,],
_ _ E(Xl) | & — 1
w = E(X) = |:E(Xz)] - Lﬂ ) [2}

I=EX-p)X-p)

and

_ E|:(X1 - m)’ (X1 — ) (X, = #fz)]
(X2 — ) (X7 — ) (X2 — M)z

= l:E(Xl - m) E(X — m)(X; - M):I
E(Xy — m) (X1 — 1) E(X: - #z)2

~ o o112 ] 69 -.08
o221 032 —.08 16 -
We note that the computation of means, variances, and covariances for discrete
random variables involves summation (as in Examples 2.12 and 2.13), while analo-
gous computations for continuous random variables involve integration.

Because o = E(X; — w;)( Xy — py) = o, it is convenient to write the
matrix appearing in (2-31) as

o1l 012 Tt Oqp
I=EX-p)(X-p) =12 %2 7 W (232)
O1p O2p " Opp

We shall refer to g and 3 as the population mean (vector) and population
variance—covariance (matrix), respectively.

The multivariate normal distribution is completely specified once the mean
vector s and variance—covariance matrix 3, are given (see Chapter 4), so it is not
surprising that these quantities play an important role in many multivariate
procedures.

It is frequently informative to separate the information contained in vari-
ances o;; from that contained in measures of association and, in particular, the
measure of association known as the population correlation coefficient p;;. The
correlation coefficient p;, is defined in terms of the covariance o, and variances
o;;and o as

ik
Dip = —— % 2-33
* 7 Vou Vo (2-23)

The correlation coefficient measures the amount of linear association between the
random variables X; and X} . (See, for example, [5].)
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Let the population correfation matrix be the p X p symmetric matrix

r o1 o2 . 9ip
Vo Vo Vo Vo, Vo Vo
712 072 ‘Tz,u

I3

p=| VeV VeuVem | Ve,

T1p 92p %pp
\/7\/——’ V022 VOpp . \/"Tp; V‘TPPJ
1 P12 ' Pip
A L (2-34)
L.P1p P2p " 1

and let the p X p standard deviation matrix be

\/}‘Tl 0 0
V2= ? \/"—22 . ? (2:35)
o 0 - N
Then it is easily verified (see Exercise 223) that
Vi2pvi2 =3, (2-36)
and
p = (VA5 vy (2-37)

That is, 3 can be obtained from VY2 and P, whereas P can be obtained from .
Moreover, the expression of these relationships in terms of matrix operations allows
the calculations to be conveniently implemented on a computer.

Example 2.14 (Computing the correlation matrix from the covariance matrix)

Suppose
4 1 2 o1 012 013
=01 9 -3|=|op o o3
2 -3 25 013 033 O33

Obtain V1/2 and p.
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Here
V(Tll 0 0 2 0 0
V2 = 0 Vo, 0 |=]|030
0 0 Vois 0 0 5
and
100
(vizyl=|0 1 o
00 %

Consequently, from (2-37), the correlation matrix g is given by

Lool[sa 1 27[f 00
vylzeviyt =10 L ofl1 9 -3|{o L o

0 0 342 -3 25][0o 0 }

1 1

L5 5

=1 1

=ts 1 =3

1 _1

5 -5 1 -

Partitioning the Covariance Matrix

Often, the characteristics measured on individual trials will fall naturally into two
or more groups. As examples, consider measurements of variables representing
consumption and income or variables representing personality traits and physical
characteristics. One approach to handling these situations is to let the character-
istics defining the distinct groups be subsets of the fotal collection of characteris-
tics. If the total collection is represented by a (p X 1)-dimensional random
vector X, the subsets can be regarded as components of X and can be sorted by
partitioning X.

In general, we can partition the p characteristics contained in the p X 1 random
vector X into, for instance, two groups of size g and p — g, respectively. For exam-
ple, we can write

M X ] e
: q :
|2 _[xo Ko [
X = = ')'('(2) and u = E(X) = |- = ;‘(i)
Xq+1 Hq+1
: p—q
L Xp - L Hp ]
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From the definitions of the transpose and matrix multiplication,

(X = w0) (XD - u@y

X~
Xy — pa o _ _
= : [Xq+l :u'q+1’Xq+2 :u'q+2,'“vXp :“'p]
L X — Ko
(X1 = p1) (Xge1 — Bos1) (X1 — 1) (Xgea = pge2) -+ (Xy — (X, — mp)
_ (X2 — I-LZ)(XqH I-Lq+1) (Xz Mz)(Xq+2 #q+2) (X, - #2).(Xp - I‘Lp)
_(Xq - I-Lq)(XqH - I-Lq+1) (Xq - I-Lq)(Xq+2 - :“'q+2) (X,] - I-Lq)(Xp - Hp)

Upon taking the expectation of the matrix (X - xM)(X@ — p @Y, we get

O19+1 Oig+2 *°° O1p
E(X — p)(X® - p@) = | P20 T2z T T <5, (2.39)
Ogq+1 Tgq+2 "°° Ogp
which gives all the covariances, o, .4, =q+1,qg+2,..., p, between

a component of X1 and a component of X 2) Note that the matrix X, is not
necessarily symmetric or even square.
Making use of the partitioning in Equation (2-38), we can easily demonstrate that

X~ u)(X ~ )

X1~ Wy (xV - x® XU — My x@ — 4@y
( (Xl)# ) (1xq yo( (gx1 ) (IX(p—’q‘)))

(X®) — g@y(xV) - {,(1)) (x® - ”(2))()((2) — u@y

((p~q)x1) (1xq ((p—q)x1) (1x(p—g})
and consequently,
N
Ty 3,
= EX -p)(X - p)y = ' |GH-L2I2
(p X P ( p-q 221 ; 222
(pXp)
o1 (ST O1.g+1 o1p
Ogq1 7 Oqq | 0gq+1 Tep
= - (2-40)
Og+1,1 "°° Ogilg Og+lg+l *'° Ogarp
L Op1 0 Opg {0pg+1 77 Opp |
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Note that ¥,, = ¥5,. The covariance matrix of X() is X,,, that of X is X,,, and
that of elements from X{) and X? is 3, (or 2212.
It is sometimes convenient to use the Cov (X1, X@)) notation where

Cov (X, Xy = %,

is a matrix containing all of the covariances between a component of XV and a
component of X?),

The Mean Vector and Covariance Matrix
for Linear Combinations of Random Variables

Recall that if a single random variable, such as X;, is multiplied by a constant c, then
E(cX)) = cE(X)) = ey
and
Var(cXy) = E(cXy — cy)? = ¢*Var (X)) = %oy

If X, is a second random vartable and a and b are constants, then, using additional
properties of expectation, we get
Cov(aX;,bX;) = E(aX) — apy) (b Xy — buy)
abE(Xy — 1) (X2 — na)
abCov (X;, X3) = abo;

Finally, for the linear combination aX; + bX,, we have

E(aX, + bXy) = aE(X,) + bE(X3) = au, + buy
Var(aX; + bX,) = E[(aXy + bXs) — (ap; + buy) I
1 j 1

i

= Ela(X; —~ m) + b(X; — w)]?
E[a®(X; — m)* + b Xy ~ ma)? + 2ab(X; — py) (X2 — )]
@Var (X;) + b*Var(X;) + 2abCov (X1, X)

a20'11 + b20'22 + 2ab0'12 (2-41)

1

With ¢’ = [a,b], aX, + bX; can be written as

la b] Bﬂ = X

Similarly, E(aX) + bX3) = apy + bu, can be expressed as

[a b] [#‘1] = CI[I-
K2

3 = l:(fu U12j|
012 032

If we let
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be the variance—covariance matrix of X, Equation (2-41) becomes
Var(aX, + bX;) = Var(¢'’X) = ¢'3Z¢ (2-42)
since
cSc=[a b |:0” 0”:| Iia} = g0y + 2ab oy, + bloy,
g2 o2 b

The preceding results can be extended to a linear combination of p random variables:

The linear combination ¢’X .= ¢, Xj + -+ + ¢, X}, has
mean = E(¢’X) =c¢'pu )
variance = Var(¢'X) = ¢’Zc¢ (2-43)
where u = E(X) and 3, = Cov(X).

In general, consider the ¢ linear combinations of the p random variables
X, X,

i
Zl = C11X1 + C12X2 + -+ C]po
Zy=enXy +epXa++ 0,X,
Zy=cpn Xy + cpXy o+ cgpX,
or
Z €11 €2 Clp_ X,
R e O R
Z, Cq1 Cq2 "0 Cgp X,
{gx1) (gxp) (px1)
The linear combinations Z = CX have
nz = E(Z) = E(CX) = Cux
3z = Cov(Z) = Cov(CX) = C2xC' (2-45)

where ux and Zx are the mean vector and variance-covariance matrix of X, respec-
tively. (See Exercise 2.28 for the computation of the off-diagonal terms in C2xC'.)

We shall rely heavily on the result in (2-45) in our discussions of principal com-
poneats and factor analysis in Chapters 8 and 9.

Example 2.15 (Means and covariances of linear combinations) Let X' = [ X, X;]
be arandom vector with mean vector pk = [u1, p7] and variance—covariance matrix

051 012
Ex =
012 072
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Find the mean vector and covariance matrix for the linear combinations
Zy=X, - X,
L =X+ X

SHE B

in terms of sy and Ty .

Here
1 1]l m IR

- = oY THjen e 101
3z = Cov(Z) C?"C [1 1][012 Uzz:H:“l 1}

- [011’2012+022 011~ 0 ]

or

and

01y — Oy . 0y 200, +0p

Note that if 017 = o;,—that is, if X; and X, have equal variances—the off-diagonal
terms in X, vanish. This demonstrates the well-known result that the sum and differ-
ence of two random variables with identical variances are uncorrelated. N

Partitioning the Sample Mean Vector
and Covariance Matrix

Many of the matrix results in this section have been expressed in terms of population
means and variances (covariances). The results in (2-36), (2-37), (2-38), and (2-40)
also hold if the population quantities are replaced by their appropriately defined
sample counterparts.

Let X = [X;, X3,..., X,] be the vector of sample averages constructed from

n observations on p variables X, X,,..., X, and let
s s,
s,<| @ .
| 51, 0 Spp
i 18 2 1Z _ -
;2 (le - X Tt 2 (X,'l - xl)(x)'p - Ip)
= j=1 X
18 -~ - 12 _ .2
L; E (1 = 3 (X = %p) -+ 7 2 (xjp ~ Xp)
j=1 j=1

be the corresponding sample variance-covariance matrix.
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The sample mean vector and the covariance matrix can be partitioned in order
to distinguish quantities corresponding to groups of variables. Thus,

X,
- % )
_ X X
X =|-2%|= i (2-46)
x| Xga x
Xp
and
Sttt Sig b Signr 0 S1p
= | Sqt " S i Sge+1 Sqp
no | e 4 )
(pxp) | Sq+11 77 Sgtlg i Sgtlget Tt Spelp
Spl T Spg i Spgvi Tt Spp
T
= |8 (2-47)
p-q| 821 { 8y

where %) and x@ are the sample mean vectors constructed from observations
x = [x,..., x,]" and x® =[xy, ,.xp]’, respectively; S1; is the sample covari-
ance matrix computed from observations x{!; S,, is the sample covariance
matrix computed from observations x?: and §,; = 83, is the sample covariance
matrix for elements of x{!) and elements of x®.

2.7 Matrix Inequalities and Maximization

Maximization principles play an important role in several multivariate techniques.
Linear discriminant analysis, for example, is concerned with allocating observations
to predetermined groups. The allocation rule is often a linear function of measure-
ments that maximizes the separation between groups relative to their within-group
variability. As another example, principal components are linear combinations of
measurements with maximum variability.

The maltrix inequalities presented in this section will easily allow us to derive
certain maximization results, which will be referenced in later chapters.

Cauchy-Schwarz Inequality. Let b and d be any two p X 1 vectors. Then
(b'd)* < (b'b) (d'd) (2-48)

with equality if and only if b = cd (or d = cb) for some constant c.
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Proof. The inequality is obvious if either b = 0 or d = 0. Excluding this possibility,
consider the vector b — xd, where x is an arbitrary scalar. Since the length of
b — xdis positivefor b — xd # 0, in this case

0 < (b- xd)'(b—xd) =hb'b~ xd’b - b'(xd) + xd'd
=b'b — 2x(b'd) + x*(d'd)

The last expression is quadrauc in x. If we complete the square by adding and
subtracting the scalar (b’d)?/d’d, we get

0<b'b- Qli)— + M — 2x(b’'d) + x*(d'd)
d'd dd

' 332 ,
O (b

d'd d'd
The term in brackets is zero if we choose x = b’d/d’d, so we conclude that
(b'd)*
d'd

or (b’d)> < (b’b)(d'd) if b # xd for some x.
Note thatifb = cd,0 = (b ~ cd)’(b — cd), and the same argument produces
(b’d)* = (b’b)(d'd). -

0<b'b-

A simple, but important, extension of the Cauchy-Schwarz inequality follows
directly.

Extended Cauchy-Schwarz Inequality. Let b and d be any two vectors, and
let B be apositive definite matrix. Then ~(P*" (px1)

(pxp)
(b’d)* = (b'Bb) (d'B'd) (2-49)
with equality if and only if b = ¢ B™!d (or d = ¢Bb) for some constant c.
Proof. The inequality is obvious when b = 0 or d = 0. For cases other than these,
consider the square-root matrix B'/? defined in terms of its eigenvalues A; and

the normalized eigenvectors e; as B/2 = 2 VA, e;e.. If we set [see also (2-22)]

B2 = ﬁ:—ee

it follows that

b’d = b’ld = b'B'2B""/2d = (B'?b)'(B™'/d)
and the proof is completed by applying the Cauchy-Schwarz inequality to the
vectors (B'/2b) and (B™'2d). =

The extended Cauchy-Schwarz inequality gives rise to the following maximiza-
tion result.
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Maximization Lemma. 1Let B ) be positive definite and ( d be a given vector.
. PXPp. px1)
‘Then, for an arbitrary nonzero vector ( xl),
pX

max (x'd)f = d'B1d
- =0 x'Bx (2-50)
with the maximum attained when x = cB™' d for any constant ¢ # 0.

(px1)  (pXp){px1)

Proof. By the extended Cauchy-Schwarz inequality, (x'd)2 = (x'Bx) (d'B71a),
Because x # 0 and B is positive definite, x’Bx > 0, Dividing both sides of the

inequality by the positive scalar x'Bx yields the upper bound
(x’d)2 "

_ = d'R
B S d'B'd

Taking the maximum over x gives Equation (2-50) because the bound is attained for
X = CB'Id. -

A final maximization result will provide us with an interpretation of eigenvalues.
Maximization of Quadratic Forms for Points on the Unit Sphere. Let B be a
positive definite matrix with eigenvalues A; = A, = --- = Ap, = 0 and zgg;(g«):iated

normalized eigenvectors e,, €;,..., €,. Then

x'Bx .

max—— = A (attained whenx = e,)

x#0 XX
x'Bx @-51)

in—— = A attained w =
min - » ( henx = e,)
Moreover,
x'Bx

uIerilax o X% = Ajst (attained whenx = exq1,k =1,2,...,p — 1) (2-52)

where the symbol 1 is read “is perpendicular to.”
Proof. et P Dbe the orthogonal matrix whose columns are the eigenvectors

(p%p)
€y, €. .., e, and A be the diagonal matrix with eigenvalues A, A,,.. ., A, along the

main diagonal. Let B2 = PAYZP’ [see (2-22)] and Y, = B ox.
L (X1} (pXp)(px1)
Consequently, x # 0implies y # 0. Thus,

xBx X’BI/ZBI{ZX N erAl/?PrPAl/‘ZP;x _ ylAy

x’x X \-P_Ig—:x yry y;y
(p%p)
ﬁ: Ayt Z; yE
e e e Y (2-53)
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Setting x = e, gives

1
y=Pe ="
0
since
ele, = {1, k=1
0, k=1

For this choice of x, we have y' Ay/y'y = A/1 = Ay, Or

e'IBel

= eiBe;, = 2-54
cie; eBe, = Ay (2-54)

A similar argument produces the second part of (2-51).
Now,x = Py = yje; + ye; + -+ + y,e,,s0x L ey,..., e implies

0 = ejx = yjeje; + yeje; +---+ yeie, =y, [=k

Therefore, for x perpendicular to the first k eigenvectors e;, the left-hand side of the
inequality in (2-53) becomes

x'Bx - i=k+1
xX'x 2
2
DI
i=k+1
Taking yi 41 = 1, Y342 = - - = y, = 0 gives the asserted maximum. -

For a fixed xy 3 0, x4Bxg/xjxy has the same value as x'Bx, where
x’ = x5/Vxgxg is of unit length. Consequently, Equation (2-51) says that the
largest eigenvalue, Ay, is the maximum value of the quadratic form x’Bx for all
points x whose distance from the origin is unity. Similarly, A, is the smallest value of
the quadratic form for all points x one unit from the origin. The largest and smallest
eigenvalues thus represent extreme values of x'Bx for points on the unit sphere.
The “intermediate” eigenvalues of the p X p positive definite matrix B also have an
interpretation as extreme values when x is further restricted to be perpendicular to
the earlier choices.



VECTORS AND MATRICES:

%,

Basic CONCEPTS

Vectors

Many concepts, such as a person’s health, intellectual abilities, or personality, cannot
be adequately quantified as a single number. Rather, several different measure-

ments Xj, Xz, -, Xm areé required.

Definition 2A.1. An m-tuple of real numbers (x1,x2,--., Xy, .., X,y) arranged in a
column is called a vector and is denoted by a boldfaced, lowercase letter.
Examples of vectors are
X 1 i i
X = x.z s a=|0]|, b= , y = 2
: 1
0 -2
Xm -1

Vectors are said to be equal if their corresponding entries are the same.

Definition 2A.2 (Scalar multiplication). Let ¢ be an arbitrary scalar. Then the
product cxis a vector with ith entry cx;.

To illustrate scalar multiplication, take ¢; = Sandc; = —1.2.Then
1 5 1 -12
qy=5| 2|= 10| and y=(-12)| 2|=|-24
-2 -10 -2 2.4

82
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Definition 2A.3 (Vector addition). The sum of two vectors X and y, each having the
same number of entries, is that vector

z=x+y withithentry z,=x; + y

Thus,
3 1 4
-1+ =1
4 -2 2
X + y = z

Taking the zero vector, 0,to be the m-tuple (0, 0,...,0) and the vector —x to be the
m-tuple (—x;, —x,,...,—x,,), the two operations of scalar multiplication and
vector addition can be combined in a useful manner.

Definition 2A.4. The space of all real m-tuples, with scalar multiplication and
vector addition as just defined, is called a vector space.

Definition 2A.5. The vectory = a;x; + asx, + -+ + ayxy is a linear combination of

the vectors x;, X3, ..., X; . The set of all linear combinations of X, x3, . - ., X, is called
their linear span.

Definition 2A.6. A set of vectors X;, Xy, ..., X, is said to be linearly dependent i
there exist k numbers (ay, as,. .., ay), not all zero, such that

@)Xy + azxy + -+ apxg =0

Otherwise the set of vectors is said to be linearly independent.

If one of the vectors, for example, x;, is 0, the set is linearly dependent. (Let 2; be
the only nonzero coefficient in Definition 2A.6.)

The familiar vectors with a one as an entry and zeros elsewhere are linearly
independent. For m = 4,

1 0 0 0

0 1 0 0

X; = ol X2 = ol X3 = 1 X4 = 0

0 0 0 1

SO

a1-1+a2-0+a3'0+a4'0 a;
_ @0 +ar1+a3°0+a40|_ | @2
0=ax, + &% + asx; + axy = a,°0+ a,-0 + az+1 + a,-0 as
a;°0+ a0+ a3+0 + ay-1 ay

implies that a; = a; = a3 = a, = 0.
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As another example, let £ = 3 and m = 3,and let

1 2
X; = 1 N Xy = 5 . X3 = 1
1 -1 —~1

Then
2x; "X2+3X3=‘-0

Thus, x;, X,, X3 are a linearly dependent set of vectors, since any one can be written
as a linear combination of the others (for example, x, = 2x; + 3x3).

Definition 2A.7. Any set of m linearly independent vectors is called a basis for the
vector space of all m-tuples of real numbers. .

Result 2A.1. Every vector can be expressed as a unique linear combination of a
fixed basis. ]

With m = 4, the usual choice of a basis is

1 0 0 0
0 1 0 0
ol ol 1/ 0
0 0 0 1

These four vectors were shown to be linearly independent. Any vector x can be
uniquely expressed as

1 0 0 0 Xy
0 1 0 0 X

xlo +x20 +x;1 + x4 = J-’z =x
0 0 0 1 X4

A vector consisting of m elements may be regarded geometrically as a point in
m-dimensional space. For example, with m = 2, the vector x may be regarded as
representing the point in the plane with coordinates x, and x;.

Vectors have the geometrical properties of length and direction.

Definition 2A.8. The length of a vector of m elements emanating from the origin is
given by the Pythagorean formula:

lengthofx = Ly = VE+ 2+ + 2
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Definition 2A.9. The angle @ between two vectors x and y, both having m entries, is
defined from

(xlyl txpy toot xmym)

cos(9) =

LyL,
where L, = length of X and L, = length of y, x, x5, .., x,, are the elements of x,
and y;, 3, ..., ¥, are the elements of y.
Let
-1 4
5 -3
X = ) and y = 0
-2 1

Then the Iength of x, the length of y, and the cosine of the angle between the two
vectors are

lengthof y = V42 + (=3)7 + 0% + 12 = V26 = 5.10

and
cos (6) = %__Ll_ [xiys + xo9m + X3y + xay4]
x Ly
1 1
=V V% [(—1)4 + 5(=3) + 2(0) + (-2)1]

1

=583 x 510 |2 =706

Consequently, 8§ = 135°.

Definition 2A.10. The inner (or dot) product of two vectors x and y with the same
number of entries is defined as the sum of component products:

xnt xaya ot ot XY,

We use the notation x’y or y'x to denote this inner product.

With the x’y notation, we may express the length of a vector and the cosine of
the angle between two vectors as )

Ly =lengthofx = Vx? + x3 + - + x3, = Vx'x
X'y
c0s(f) = ———r—
Vx'x Vy'y
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Definition 2A.1 1. When the angle between two vectors X, y is 8§ = 90° or 270°, we
say that x and y are perpendicular. Since cos(#) = 0 only if 8 = 90° or 270°, the
condition becomes

x and y are perpendicular if X'y = 0
We writex 1 y. .

The basis vectors

1 0 0 0
0 1 0 0
0/ o 1) 0
0 0 0 1

are mutually perpendicular. Also, each has length unity. The same construction
holds for any number of entries m.

Result 2A.2.

(a) zis perpendicular to every vector if and only ifz = 0.

(b) If z is perpendicular to each vector x;,X,,...,X, then z is perpendicular to
their linear span.

(¢) Mutually perpendicular vectors are linearly independent. [

Definition 2A.12. The projection (or shadow) of a vector X on a vector y is

(x'y) y
L

projectionofxony =

If y has unit length sothat L, = 1,

projection of x ony = (x'y)y

Ify, vy, ..., Y, are mutually perpendicular, the projection (or shadow) of a vector x
on the linear span of y, Y5, ..., ¥ is
(xy) ., (Xy) (x'y,)
o Wt —ypte oy,
yin Y2y Y:¥r

Result 2A.3 (Gram-Schmidt Process). Given linearly independent vectors x;,
X, ..., Xy, there exist mutually perpendicular vectors uy, uy, ..., u, with the same
linear span. These may be constructed sequentially by setting

m =X

o= — ("5“1)“

2 2 i 1

L ) ()

* * uju, ! WUy k-t
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We can also convert the w’s to unit length by setting z; = u;/Vuju;. In this
k=1

construction, (X;z;) z; is the projection of x; on z; and > (xiz;)z; is the projection
j=1

of X, on the linear span of X1,Xa,...,X4_y. ]

For example, to construct perpendicular vectors from

4 3
0 1
X = 0 and X; = 0
2 -1
we take
4
L3} 1 0
2
SO
wu, =42+ 02+ 02+22=20
and
xhu, = 3(4) + 1(0) + 0(0) — 1(2) = 10
Thus,
3 4 1 4 1
. = 1| _10j0|_| 1 d 1 (o 141
2 ol 20|0 o| ™ BT Aolol 2T VG| o
-1 2 -2 2 -2
Matrices

Definition 2A.13. An m X k matrix, generally denoted by a boldface uppercase
letter such as A, R, X, and so forth, is a rectangular array of elements having m rows
and k columns.

Examples of matrices are

-7 2 100
A=| 0 1] B=|:: _;lo], I=(01 0
3 4 /x 00 1

—1

T
2 1 ’ E = [el]
1

M
]
W -
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In our work, the matrix elements will be real numbers or functions taking on values
in the real numbers.

Definition 2A.14. The dimension (abbreviated dim)of an m X k matrix is the ordered
pair (m, k); m is the row dimension and k is the column dimension. The dimension of a
matrix is frequentlyindicated in parentheses below the letter representing the matrix.
Thus, the m X k matrix A is denoted by ( ék).

m

In the preceding examples, the dimension of the matrix ¥ is 3 x 3, and this
information can be conveyed by writing (323).
X

An m X k matrix, say, A, of arbitrary constants can be written

a;y a2 o A
| @1 @2 - 4y

(mxk) : :
Am1 Am2 " Apy

or more compactly as ( Al») = {a;;}, where the index i refers to the row and the
mxK

index j refers to the column.

An m X 1 matrix is referred to as a column vector. A 1 X k matrix is referred
to as a row vector. Since matrices can be considered as vectors side by side, it is nat-
ural to define multiplication by a scalar and the addition of two matrices with the
same dimensions.

Definition 2A.15. Two matrices( ék) = {a;;} and( Bk) = {b;;} are said to be equal,
m mx.

written A = B,ifa;; = b;;,i = 1,2,...,m,j = 1,2,..., k. That is, two matrices are

equal if

(a) Their dimensionality is the same.

(b) Every corresponding element is the same.

Definition 2A.16 (Matrix addition). Let the matrices A and B both be of dimension
m X k with arbitrary elements a;; and b;;, i = 1,2,...,m, j = 1,2,..., k, respec-
tively. The sum of the matrices A and B is an m X k matrix C, written C = A + B,
such that the arbitrary element of C is given by

c,-,-=a,-,~+'b,-,- i=1,2,...,m, j=1,2,...,k

Note that the addition of matrices is defined only for matrices of the same
dimension.

For example,

323 (3 67|_[68 10
4 1 1 2 -1 0| |60 1

A + B

il
&
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Definition 2A.17 (Scalar multiplication). Let ¢ be an arbitrary scalar and ( Ak)-= {ai}.
mX

Then ('gék) = (mAxc;() = (mEk) = {b;;}, where b;;=ca;;=ayc, i=1,2,....m,

Multiplication of a matrix by a scalar produces a new matrix whose elements are
the elements of the original matrix, each multiplied by the scalar.

For example, if ¢ = 2,

3 4 3 -4 6 -8
212 6= (2 6[2=1[4 12

0 5 0 5 0 10

cA = Ac = B

Definition 2A.18 (Matrix subtraction). Let( Ak) = {aij} and( Bk) = {b;;} be two
mX mx

matrices of equal dimension. Then the difference between A and B, written A — B,
isan m X k matrix C = {c;;} given by

C=A-B=A+4(-1)B
Thatis,c,-,- = ai; + (—l)bij = a;; — b,-i,i = 1,2, ...,m,j = 1,2, ,k
Definition 2A.19. Consider the m X k matrix A with arbitrary elements a;;,1 = 1,

2,...,m, j=1,2,... k. The transpose of the matrix A, denoted by A’', is

the & X m matrix with elements a;;, j = 1,2,...,k,i = 1,2,...,m. That is, the

transpose of the matrix A is obtained from A by interchanging the rows and
columns.

As an example, if

7

2 3
A = 1 , then A' =11 -4
(2%3) 7 -4 6 (3%2) 3 6

Result 2A.4. For all matrices A, B, and C (of equal dimension) and scalars ¢ and 4,
the following hold:

(a) (A+B)+C=A+(B+C)

(b)) A+B=B + A

() c(A+B)=cA+cB

d) (c+d)A=cA+dA

(e) (A+B) =A'"+ B (That is, the transpose of the sum is equal to the
sum of the transposes.)
() (cd)A = c(dA)

@ (cA) =cA’ =
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Definition 2A.20. If an arbitrary matrix A has the same number of rows and columns,
then A is called a square matrix. The matrices 3, 1, and E given after Definition 2A.13
are square matrices.

Definition 2A.21. Let A beak X k (square) matrix. Then A is said to be symmetric
if A = A’. Thatis, A issymmetricifa;; = a;, i =1,2,...,k,j=1,2,... k.

Examples of symmetric matrices are

a c e f

1 00
I =lo 1 0| A = 2 4 , B = c b g d
(3x3) 00 1 (2x2) 4 1 (4x4) e g ¢ a
f d a d

Definition 2A.22. The k X k identity matrix, denoted by (klk), is the square matrix
X

with ones on the main (NW-SE) diagonal and zeros elsewhere. The 3 X 3 identity
matrix is shown before this definition.

Definition 2A.23 (Matrix multiplication). The product AB of an m X n matrix
A = {a;;} and an n X k matrix B = {b;;} is the m X k matrix C whose elements
are

n
;= X apby  i=1,2,....m j=12,. .k
-1

Note that for the product AB to be defined, the column dimension of A must
equal the row dimension of B. If that is so, then the row dimension of AB equals
the row dimension of A, and the column dimension of AB equals the column
dimension of B.

For example, let

3 -1 2
= d =
(zés) '74 0 5:' an (3]32)

4
3 -1 2 Z = 11 20| |¢a; €2
4 0 5 4 3 32 31 Gy €2

(2%3) (3%2) (2x2)

-2

AW

Then
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where
e = (3)(3) + (~1)(6) + (2)(4) = 11
a2 = (3)(4) + (-1)(=2) + (2)(3) = 20
€2y = (4)(3) + (0)(6) + (5)(4) = 32
22 = (4)(4) + (0)(=2) + (5)3) = 31

As an additional example, consider the product of two vectors. Let

1 2

0 -3

x=_, and y = 1

3 -8
Thenx' =[1 0 -2 3]and
2
, -3

xXy=[1 0 -2 3] 1 =([-20]=(2 -3 -1 -8]

-8

Note that the product xy is undefined, since xisa 4 X 1matrixandyisa4 X 1 ma-
trix, so the column dim of x, 1, is unequal to the row dim of y, 4. If x and y are vectors
of the same dimension, such as n X 1, both of the products x'y and xy’ are defined.
In particular, y'x = x'y = x;)1 + X} + --- + X,),, and Xy’ is an n X n matrix

with i, jth element x;y;.

Result 2A.5. For all matrices A, B, and C (of dimensions such that the indicated

products are defined) and a scalar c,
(a) ¢(AB) = (cA)B

(b) A(BC) = (AB)C

(c) A(B+ C) =AB + AC

(d) (B+ C)A =BA +CA

(e) (AB)' = B'A’

More generally, for any x; such that A x; is defined,

) DAx;=A > x
j=1 J=1

(2) 2] (Ax))(Ax))" = A(% x,-x,'-) A’
J= =
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There are several important differences between the algebra of matrices and
the algebra of real numbers. Two of these differences are as follows:

1. Matrix multiplication is, in general, not commutative. That is, in general,
AB # BA. Several examples will illustrate the failure of the commutative law

(for matrices). B _;J [‘2)] - [ﬂ
[

7 6]
[1 0 1} 3 =[9 10]
-3 6 35
2 -3 - 33

but

is not defined.

but
761, 4 (19—1843
31|, 5 4|=|1 3 3
24 |10 —12 26
Also,
4 -1]] 21} _[11 0
0 1}]-3 4 ~3 4
but

2 1(14 -1]_ 8 -1
-3 4(/0 1 -2 7
2. Let 0 denote the zero matrix, that is, the matrix with zero for every element. In
the algebra of real numbers, if the product of two numbers, ab, is zero, then
a = 0 or b = 0. In matrix algebra, however, the product of two nonzero matri-
ces may be the zero matrix. Hence,

AB =0
(mxn)(nxk) (mxik)

does not imply that A = 0 or B = 0. For example,

HH EEH

It is true, however, that if either A = @ or B = 0 , then
mxn) {mxn) (Axk) (nxk)

A B = 0.
(mXn)(nxk) (mxk)
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Definition 2A.24. The determinant of the square k X k matrix A = {a;;}, denoted
by | A |, is the scalar

IA ‘ =4 ifk=1
k

|A| = ZalilA”K—l)Hi ifk>1
=1

where A, is the (k — 1) X (k — 1) matrix obtained by deleting the first row and
k
jthcolumn of A.Also,| A | = 3, a;;| A;;|(—1)**/, with the ith row in place of the first

J=1
row.

Examples of determinants (evaluated using Definition 2A.24) are

1 3
6 4

} =1]4|(-1) + 3|6|(—1)> = 1(4) + 3(6)(—1) = —14

In general,

a,; a

M2 = a1ay0(~1)? + anpap (1) = ag1a; — anan

azy 4az;
3 1 6

4 5 7 5 4
7 4 5|= 3'_7 1'(—1)2 +1, 1’(~1)3 + 6‘; _7‘(—1)4
2 -7 1
= 3(39) — 1(~3) + 6(~57) = —222
1 0
1 0
01 of=1 -2 +0[0 =1y +0]? Y1y =10 =1
0 0 01 10 1 00

IfIis the k X k identity matrix, |I| = 1.

a1 a2 a3
a1 @33 az;
a3 A3z d4ss

a a; a a a a
= a,, 22 3 (_1)2 + ap 21 23 (_1)3 + a5 21 422
a3y asj as1 a3y das;

(-1)*

= a11a32a33 + a12033a31 t 31437013 — G31057a13 — 431812033 — 432823411

The determinant of any 3 X 3 matrix can be computed by summing the products
of elements along the solid lines and subtracting the products along the dashed
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lines in the fol]gwing diagram. This procedure is nor valid for matrices of higher
dimension, but in general, Definition 2A24 can be employed to evaluate these

determinants.

We next want to state a result that describes some properties of the determinant
However, we must first introduce some notions related to matrix inverses.

Definition 2A.25. The row rank of a matrix is the maximum number of linearly inde-
pendent rows, considered as vectors (that is, row vectors). The column rank of a matrix
is the rank of its set of columns, considered as vectors.

For example, let the matrix
11 1
A=]25 -1
01 -1

The rows of A, written as vectors, were shown to be linearly dependent after
Definition 2A.6. Note that the column rank of A is also 2, since

1 1 1 0
=212 |+|[5]|+]-1|=]0
0 1 -1 0

but columns 1 and 2 are linearly independent. This is no coincidence, as the
following result indicates. i

Result 2A.6. The row rank and the column rank of a matrix are equal. -

Thus, the rank of a matrix is either the row rank or the column rank.
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Definition 2RA.26. A square matrix A is nonsingularif A x = 0 implies
(kxk) (kxk)(kx1)  (kx1)
that x = 0 .If a matrix fails to be nonsingular, it is called singular. Equivalently,

(kX1)  (kx1)
asquare matrix is nonsingular if its rank is equal to the number of rows (or columns)
it has.

Note that Ax = x;a; + xa; + -+ + xia, where a; is the ith column of A, so
that the condition of nonsingularity is just the statement that the columns of A are
linearly independent.

Result 2A.7. Let A be a nonsingular square matrix of dimension k X k. Then there
isa unique k& X k matrix B such that

AB =BA =1
where I is the k X k identity matrix. . ||
Definition 2A.27. The B such that AB = BA = I is called the inverse of A and is

denoted by A™!. In fact, if BA = I or AB = I, then B = A™}, and both products
must equal L

For example,

1R W
| IN—

since

Result 2A.8.

(a) The inverse of any 2 X 2 matrix

is given by
= 1 az3 “alz]
Al=—
A |:‘1121 ap
(b) The inverse of any 3 X 3 matrix

a1 ay2 d13
A=|ay apy axp
a3; aszz ass
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is given by
A2 431 (M2 13 a12 a3
a3; 433 33 as3 a3y a3
LAl= 1| | ap @ a13| _ |41 aps
[Al| |a3 a33| [a1 a3z |41 ay;
@1 G (411 aj; a1 a2
L 1931 432 a3, ayz ) azzJ

In both (a) and (b), it isclear that | A | # 0 if the inverse is to exist.

(¢) In general, A" has j, ith entry [|A;;|/|A]}(~1)'*/, where A;; is the matrix
obtained from A by deleting the ith row and jth column. ™

Result 2A.9. For a square matrix A of dimension k& X k, the following are equivalent:

= 0 implies = 0 i i .
(a) (kek)(kf(l) (kxl)lmpl (k>x<1) (kxl)(A is nonsingular)
(b) [A] # 0.
(¢c) There exists a matrix A™ such that AA™ = A”A = ( I . (-
kXk)

Result 2A.10. Let A and B be square matrices of the same dimension, and let the
indicated inverses exist. Then the following hold:

@ (A7) = (&)

(b) (AB)™ = B'A™ -

The determinant has the following properties.

Result 2A.11. Let A and B be k X k square matrices.

(a |A] = A

(b) If each element of a row (column) of A is zero,then |A| = 0
(¢) If any two rows (columns) of A are identical, then | A| = 0
(d) If A is nonsingular, then |A | = 1/| A™'|; that is, |A || A1 | = 1.
(e) |AB| = |A|[B]

(f) |cA| = c*|A|, where cis a scalar.

You are referred to [6] for proofs of parts of Results 2A.9 and 2A.11. Some of
these proofs are rather complex and beyond the scope of this book. ]

Definition 2A.28. Let A = {a;;} be ak X k squarematrix. The frace of the matrix A,
k
written tr (A), is the sum of the diagonal elements; that is, tr (A) = 3 a;;.
i=1
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Result 2A.12. Let A and B be k X k matrices and ¢ be a scalar.

(@) tr(cA) = ctr(A)

(b) tr(A £ B) = tr(A) £ tr(B)

(¢c) tr(AB) = tr(BA)

(d) tr (B'AB) = tr(A)

(e) tr(AA’) = é é a% -

i=1 j=1

Definition 2A.29. A square matrix A is said to be orthogonal if its rows, considered
as vectors, are mutually perpendicular and have unit lengths; that is, AA’ = L

Result 2A.13. A matrix A is orthogonal if and only if A = A’. For an orthogonal
matrix, AA’ = A’A = I, so the columns are also mutually perpendicular and have
unit lengths. ]

An example of an orthogonal matrix is

|
RN= N = R= N =
|

N= R= D= =

[STEC ST TR ST
RNI= R R= R =

Clearly, A = A’,s0 AA’ = A'A = AA We verifythat AA =1 = AA’ = A’A, o1

1 1 1t 1r-:r 1 o101

2 2 2 2 2 2 2 2 1 0 0O
1 1 1 1 1 1 1 1

2 T2 2 3 2 2 2 z{_]01 00
1 1 _1 1 1 1 17

2 2 2 2 2 2 2 2 0010
11 1 _1 11 1 o_1 00 01
2 2 2 2 2 2 2 2

A A = I

soA’ = A™ and A must be an orthogonal matrix.
Square matrices are best understood in terms of quantities called eigenvalues
and eigenvectors.

Definition 2A.30. Let Abe a k X k square matrix and I be the k¥ X k identity ma-
trix. Then the scalars A;, A, ... ., A, satisfying the polynomial equation | A — AI| = 0
are called the eigenvalues (or characteristic roots) of a matrix A. The equation
| A — AI| = O(as a function of A) is called the characteristic equation.

it

For example, let
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A - M| = 'B g}‘*[é ﬂ.

Then

B _j1-A 0 —(1-n0
1 3-4a] B -H=0
implies that there are two yoots, A; = 1 and A; = 3. The eigenvalues of A are 3
and 1. Let
13 -4 2
A=|—-4 13 -2
2 -2 10
Then the equation '
13-2 -4 2
[A - Al = -4 13- ~2| = =\ + 36A* — 405\ + 1458 = 0
2 -2 10— A

has three roofs: Ay = 9, A2 = 9, and A; = 18; thatis, 9,9, and 18 are the eigenvalues
of A.

Definition 2A.31. Let A be a square matrix of dimension & X £ and let A be an eigen-
valueof A.If x isanonzerovector{ x # 0 )suchthat
(kX1) (kx1)  (kx1)
Ax = Ax
then x is said to be an eigenvector (characteristic vector) of the matrix A associated with
the eigenvalue A.

An equivalent condition for A to be a solution of the eigenvalue-eigenvector
equation is |A - M| = 0. This follows because the statement that Ax = Ax for
some A and x # 0 implies that

0=({A - Al)x = x;coly(A — AL) +--- + x, coli(A ~ Al)

That is, the columns of A — Al are linearly dependent so, by Result 2A.9(b),
|A — AI| =0, as asserted. Following Definition 2A.30, we have shown that the

eigenvalues of
10
St

are A; = 1 and A; = 3. The eigenvectors associated with these eigenvalues can be
determined by solving the following equations:

HEIEE

Ax = Alx
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From the first expression,
X; = Xy
X1 + 3X2 = X3
or
xy = —2x;

There are many solutions for x; and x,.
Setting x, = 1 (arbitrarily) gives x; = —2, and hence,

o[

is an eigenvector corresponding to the eigenvalue 1. From the second expression,
xy = 3x,
Xy + 3X2 = 3x2

implies that x; = 0 and x, = 1 (arbitrarily), and hence,

[

is an eigenvector corresponding to the eigenvalue 3.1t is usual practice to determme
an eigenvector so that it has length unity. That is, if Ax = Ax, we take e = x/ VX
as the eigenvector correspondlng to A. For example, the eigenvector for A; = 1is

= [~2/V5, 1/V5)

Definition 2A.32. A quadratic form Q(x) in the k variables x;, x,,. . ., x; is Q(x) = x’'Ax,
where ' =[x, x;,..., x;] and A isa k X k symmetric matrix.

kK k
Note that a quadratic form can be written as Q(x 2 > a;;x,x;. For example,
i=1 j=1

O(x) =[x x3] |:i i:l [i:j' = x] + 2x.x; + x5

. 1 3 0 X1
O(x)=1[x; x; x)|[3 =1 2| x| =x}+ 6xyx, ~ x% ~ 4xpx; + 23
0 -2 2]1[x

Any symmetric square matrix can be reconstructured from its eigenvalues
and eigenvectors. The particular expression reveals the relative importance of
each pair according to the relative size of the elgenvalue and the direction of the

eigenvector.
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Result 2A.14. The Spectral Decomposition. Let A be a k X k symmetric matrix.
Then A can be expressed in terms of its k eigenvalue-eigenvector pairs (A;, €;) as

k
A= E)&ieieé =

i=1

22 4
A‘[ 4 2.8:, '

|[A = AIl =A%~ 54+ 616 - 16 = (A — 3)(A — 2)

For example, let

Then

so A has eigenvalues A; = 3 and A, = 2. The corresponding eigenvectors are
e] = [1/\/5,2/\/5] ande; = [2/\/§, ~1/\/§], respectively. Consequently,

1 2
a2z 4l G Vs|[L 2], ,|v5|[2 -1
T4 28] | 2|V V3 “1|LV5 V5
V35 V35

| 6 12 . 1.6 -8
T 112 24 -8 4

The ideas that lead to the spectral decomposition can be extended to provide a
decomposition for a rectangular, rather than a square, matrix. If A is a rectangular
matrix, then the vectors in the expansion of A are the eigenvectors of the square
matrices AA’ and A’A.

Result 2A.15. Singular-Value Decomposition. Let A be an m X k matrix of real
numbers. Then there exist an m X m orthogonal matrix U and a ¥ X k orthogonal
matrix V such that

A = UAY’

where the m X k matrix A has (i, i} entry A; = Ofori = 1,2,..., min(m, k) and the
other entries are zero. The positive constants A, are called the singular values of A. =

The singular-value decomposition can also be expressed as a matrix expansion
that depends on the rank r of A. Specifically, there exist r positive constants
A1, Az,..., A, r orthogonal m X 1 unit vectors uj,uy,...,u,, and r orthogonal
k X 1.unit vectors vy, v,,..., V,, such that

A= E A,‘ “,‘V,{ = U,A,V:-
i=1

where U, = [ug,u,,...,u,],V, = [V}, V,,...,v,],and A, is an r X r diagonal matrix
with diagonal entries A;.
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Here AA’ has eigenvalue-eigenvector pairs (A?, w;), so
AA'w; = Ay

with A3, A3,...,A2 > 0 = 22,1, A%4,,..., A%, (for m > k). Then v, = A7'A'u;. Alter-
natively, the v; are the eigenvectors of A’A with the same nonzero elgenvalues At

The matrix expansion for the singular-value decomposition written in terms of
the full dimensional matrices U, V, A is

— ’

A U
(mxk) (mxm)(mxk)(kxk)

where U has m orthogonal eigenvectors of AA* as its columns, V has k orthogonal
eigenvectors of A’A as its columns, and A is specified in Result 2A.15.
For example, let

Then

3 -1
311 1 1
-1 3 1 11
1 1 11 1
You may verify that the eigenvalues y = A> of AA' satisfy the equation

y? — 22y + 120 = (y — 12)(y — 10), and consequently, the eigenvalues are
y1=A=12 and 7y, =A2=10. The corresponding eigenvectors are

uy = |:\/_ \/_:| and u; = [% _712j|,respectively.

Also,
3 -1 10 0. 2
aa=(1 5[ 24|00
1 1 2 4 2
so|A'A — yI|= -9 - 229% - 120y = —y(y — 12) (y — 10}, and the eigenvalues

are y; = A3 = 12, v, = A3 = 10, and v3 = A% = 0. The nonzero eigenvalues are the
same as those of AA’. A computer calculation gives the eigenvectors

A IS S TS U U I T Y 2 —5]
MTIVE V6 VBT VE VB "’“”3“\/—\/—\/"

Eigenvectors v; and v, can be verified by checking:

10 027 1] 1r1
A'Av;=| 0 10 4|—=|2[=12—=—=|2]=Aly
2 4 2] V8|1 Ve
0 027, 2] 1'2
A'Av, =| 0 10 4| —=| -1 |=10—=]| -1 | = A3v;
2 4 2] V3| o] V3o
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Taking A; = V12 and A, = V10, we find that the singular-value decomposition of

Ais
3 11
A=l.131

1 1

Va1 2 1 V2l 2 -1
”ﬁi[ﬁﬁﬁ}*m—_l[ﬁﬁ"]

V2 V2

The equality may be checked by carrying out the operations on the right-hand side.

The singular-value decomposition is closely connected to a result concerning
the approximation of a rectangular matrix by a lower-dimensional matrix, due to
Eckart and Young ([2]).If a m X k matrix A is approximated by B, having the same
dimension but lower rank, the sum of squared differences

(a;; = b)) = tr[(A — B)(A - B)']

INZE]
Mu—

1l
—_
n
—_

i=lj

Result 2A.16. Let A be an m X k matrix of real numbers with m = k and singular
value decomposition UAV’. Let s < k = rank(A). Then

5
B = 2 A,»u,»v}
i=1

is the rank-s least squares approximation to A. It minimizes
tr[(A - B)(A - B)]
over all m X k matrices B having rank no greater than s. The minimum value, or
k

T 2
error of approximation, 1S _5_ Aj -
i=s+1

To establish this result, we use UU’ = I, and VV’ = I, to write the sum of
squares as

tr[(A —B)(A - B)']

tr[UU'(A - B)VV'(A — B)']

tr[U'(A - B)VV'(A — B)'U]

=t[(A - CHA - C)]= 2 > =3 (A )t + 22 ¢l

m k m
i=1 j=1 i=1 iy

where C = U’BYV. Clearly, the minimum occurs when ¢;; = Ofori # jand ¢; = A for
5

the s largest singular values. The other ¢;; = 0. Thatis, UBV’ = A ;or B = 2 Aju; v
i=1
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2.1

Letx’ =[5, 1, 3]andy =[-1, 3, 1].

- (a) Graph the two vectors.

2.2,

2.3.

2.4.

2.5.

2.6.

(b) Find (i) the length of x, (ii) the angle between x and ¥, and (jii) the projection of y on x.
(c) Since ¥=3 and y=1, graph [5~3,1-3,3-3]=[2,—-2,0] and
[-1-1,3-1,1-1}=[-2,2,0].

Given the matrices

-1 3 4 -3 5
A-=l:42:i, B = 1 -2, and C =) —4
-2 0 2
perform the indicated multiplications.
(a) 5A
(b) BA
(c) A'B’
(dcC's

(e) Is AB defined?

Verify the following properties of the transpose when

2 1 14 2 1 4
A—l:l 3] B"[s 0 3}’ and C‘[s 2}

(@) (A') =A

®) (€)' = (Cc

(c) (AB) = B'A’

(d) For general A and B ,(AB)' = B'A’.
(mxk) (kx¢)

When A™ and B! exist, prove each of the following.

@ (A7 = (A7)

(b) (AB)™! = B1A™! .

Hint: Part a can be proved b}r noting that AA™ = LI = I',and (AA™") = (A7)'A".
Part b follows from (B'A™)AB = B~ (A'A)B =B™'B = L

Check that
3127
3 13
Q= [_g s
13 13-
is an orthogonal matrix.
Let
9 -2
A =

(a) Is A symmetric?
(b) Show that A is positive definite.
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C 2.7,

2.8.

2.9.

2.10.

2.12,

2.13.

2.14.

2.15.

2.16.

Let A be as given in Exercise 2.6.

(a) Determine the eigenvalues and eigenvectors of A.
(b) Write the spectral decomposition of A.

(c) Find A™".

(d) Find the eigenvakues and eigenvectors of A

o[z 2]

find the eigenvalues A; and A, and the associated normalized eigenvectors ¢; and e,.
Determine the spectral decomposition (2-16) of A.

Let A be as in Exercise 2.8.

(a) Find A™".

(b) Compute the eigenvalues and eigenvectors of A™".

(c) Write the spectral decomposition of A™!, and compare it with that of A from
Exercise 2.8.

Given the matrix

Consider the matrices

4 4001 4 4001
A= [4.001 4.002} and B = [4.001 4.002001:|

These matrices are identical except for a small difference in the (2,2) position.
Moreover, the columns of A (and B) are nearly linearly dependent. Show that
A™! = (-3)B™L. Consequently, small changes—perhaps caused by rounding—can give
substantially dlfferent inverses.

. Show that the determinant of the p X p diagonal matrix A = {4;;} with a;; = 0, # J,

is given by the product of the diagonal elements; thus, |A|=ayay,--a,,
Hint: By Definition 2A.24, |A| = a,,A|; + 0 +--- + 0. Repeat for the submatrix
A | obtained by deleting the first row and first column of A.

Show that the determinant of a square symmetric p X p matrix A can be expressed as

the product of its eigenvalues A1, Ay, ..., A,; thatis,|A| = TI%, A;.

Hint: From (2-16) and (2-20), A = PAP’ with P'P = L. From Result 2A.11(e),
|[A|=|PAP'|=|P||AP'|=|P||A[|P'[=|A]||I],since|X|=|P'P|=|P'||P| Apply
Exercise 2.11.

Show that |Q| = +1 or —1if Qisa p X p orthogonal matrix.

Hint: |1QQ'| = [I]. Also, from Result 2A.11,|Q||Q’| = |Q [>. Thus, | Q |* = |I|. Now
use Exercise 2.11.

Show that Q' Q and A have the same eigenvalues if Q is orthogonal.
(p% P)(PXP)(PXP) (pxp

Hint: Let A be an eigenvalue of A. Then 0 = |A — Al|. By Exercise 2.13 and Result
2A11(e),we can write 0 = |{Q'||A — AL||Q] = |Q’AQ — Al|,since Q'Q = L

A quadratic form x’A x lS said to be positive definite if the matrix A is positive definite.
Is the quadratic form 3x? + 3x2 — 2x;1x, positive definite?

Consider an arbitrary n X p matrix A.Then A’A is a symmetric p X p matrix. Show
that A’A is necessarily nonnegative definite.
Hint: Sety = Axsothaty'y = x'A’'Ax.



2.17.

2.18.

2.19.

2.20.

2.21.

2.22.

2.23.

2.24.
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Prove that every eigenvalue of a k X k positive definite matrix A is positive.
Hint: Consider the definition of an eigenvalue, where Ae = Ae. Multiply on the left by
e'sothate'Ae = Ae’e.

Consider the sets of points (xy, x,) whose “distances” from the origin are given by
c? = 4x} + 3x3 - 2V2xx,

for ¢* = 1 and for c? = 4. Determine the major and minor axes of the ellipses of con-
stant distances and their associated lengths. Sketch the ellipses of constant distances and
comment on their positions. What will happen as c? increases?

n
Let A2 = 3" /) e;e] = PAY?P’, where PP’ = P'P = L (The A;s and the ¢;’s are

{mXxm) i=
the eigenvalues and associated normalized eigenvectors of the matrix A.) Show Properties
(1)-(4) of the square-root matrix in (2-22).

Determine the square-root matrix A'/2, using the matrix A in Exercise 2.3. Also, deter-
mine A™/2, and show that AY2A™1/2 = A12AV2 = |,

(See Result 2A.15) Using the matrix

1 1
A=|2 -2
2 2

(a) Calculate A’A and obtain its eigenvalues and eigenvectors,

(b) Calculate AA’ and obtain its eigenvalues and eigenvectors. Check that the nonzero
eigenvalues are the same as those in part a.

(c) Obtain the singular-value decomposition of A.
(See Result 2A.15) Using the matrix

48 8
A‘[3 6 —9]

(a) Calculate AA’ and obtain its eigenvalues and eigenvectors.

(b) Calculate A’ A and obtain its eigenvalues and eigenvectors. Check that the nonzero
eigenvalues are the same as those in part a.

(c) Obtain the singular-value decomposition of A.

Verify the relationships V/2pV'2 = X and p = (V2)7'£(VY2)7™" where ¥ is the
p X p population covariance matrix [Equation (2-32)], 0 is the p X p population cor-
relation matrix [Equation (2-34)], and V/2 is the population standard deviation matrix
[Equation (2-35)].

Let X have covariance matrix
4 0 0
X=(0 9 0
0 0 1
Find
(a) 27!

(b) The eigenvalues and eigenvectors of X.
(c) The eigenvalues and eigenvectors of £71,
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2.25. Let X have covariance matrix

25 -2 4
T=(-2 41
4 19

(a) Determine @ and V2,
(b) Multiply your matrices to check the relation VI2pV!/? = ¥,
2.26. Use I as given in Exercise 2.25.
(a) Find P13-
(b) Find the correlation between X 1 and 5 X 2+ X 3.
2.27. Derive expressions for the mean and variances of the following linear combinations in
terms of the means and covariances of the random variables X;, X5, and X3.
(a) X1 - 2X,
(b) X, + 3X,
(C) Xl + Xz + X3
(e) Xl + 2X2 - X3
(f) 3X, — 4X,if X, and X, are independent random variables.
2.28, Show that
COV(C] IXI + C12X2 + -0+ Clep, C21X1 + C22X2 + -+ Cszp) = C’]Excz

where ¢ = [c11, €12,-.-, €1p] @and €5 = [c21, 22, . .., czp]. This verifies the off-diagonal
elements CXx C’ in (245) or diagonal elements if ¢; = ¢,.
Hint: By (2—43),21 - E(Zl) = Cll(Xl - [.Ll) + -+ Clp(Xp - [.Lp) and
Z, — E(Zy) = cxi( Xy — 1) + -+ c2p(Xp — pp)-S0Cov(Zy, Z5) =
E[(Z, - E(Z))(Z, ~ E(Z:))] = E[(e1n( X1 — ) +
t+ap(Xp = mp))(ca( X1 — 1) + caa(Xa = pa) + + p(Xp — )]
The product
(a1 Xy — p1) + o Xy — pa) + -+

+op(Xp — mp)) (a1 Xy — ) + 2 Xo — wp) + -+ + c2p(Xp — 1p))

= (é cre(Xe — P«e)) (i am(Xm = ”""))

£=1 m=

P
E crecam(Xe — pe)(Xm — tm)

i M’v

has expected value
2
2 C1eComTem = [Cll»-A-yCIp]E[CZIa-”:CZp],~
2=1 m=1

Verify the last step by the definition of matrix multiplication. The same steps hold for all
elements.
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2.30.

2.31.
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Consider the arbitrary random vector X' = [ X, X, X3, X, X5] with mean vector
1 = [p1, 42. B3, e, ps). Partition X into

where
X3
XM = [;‘} and X® =|Xx,
2 X,
Let X be the covariance matrix of X with general element o ;4. Partition ¥ into the

covariance matrices of XV and X and the covariance matrix of an element of X (1)
and an element of X (2).

You are given the random vector X' = [Xi, X;, X3, X,] with mean vector
#% = [4, 3,2, 1] and variance—covariance matrix

30 2 2
0 1 1 0
=1 9 2
2 0 -2 4
Partition X as
X,
_| X2 X0
X,

Let
1 -2
A=[1 2] and B—|:2 _l:I

and consider the linear combinations AX(!" and BX‘?. Find
(a) E(X1)

(b) E(AX)

(c) Cov (X1

(d) Cov(AX ™)

(e) E(X®)

(f) E(BX®)

(8) Cov(X®)

(h) Cov (BX®)

(i) Cov (X, X@)

() Cov(AX1), BX®)

Repeat Exercise 2.30, but with A and B replaced by

A=l -1] and B=|:(2) _ﬂ
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2.32. You are given the random vector X' =[X), X3 ,..., Xs] with mean vector
uy =[2.4,-1,3,0] and variance—covariance matrix

-1

3

1

-1

0 -1 0 2

1
-3 0

1 -1

M

Ed

1)
S N = = s
[ e L

Partition X as

1 -1 11 1
SN 2

and consider the linear combinations AX ) and BX?. Find
(a) EX®)

(b) E(AXV)

() Cov(X™)

(d) Cov(AX M)

() E(X?)

® E®BX®)

(@) Cov(X®)

(h) Cov(BX?)

() Cov(XM,X@)
) Cov(AX™,BX®)

2.33. Repeat Exercise 2.32, but with X partitioned as

and with A and B replaced by

2 -1 0 1 2
A_I:l 1 3:| and B—|:1 _1]
2.34. Oonsiderthevectgrsb’ =[2,-1,4,0]andd’ = [-1,3,-2, 1). Verify the Cauchy-Schwarz
inequality (b'd)” = (b'b)(d'd).



2.35.

2.36.

2.37.
2.38.

2.39.

2.40.

2.41.
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Using the vectors b’ =

s [-4,3] and @' = [1, 1], verify the extended Cauchy-Schwarz
inequality (b'd)” < (b'Bb

(d'Bla) it

e

Find the maximum and minimum values of the quadratic form 4x} + 4x3 + 6x,x;, for
all points X’ = [x;, x;] such that x’x = 1.

-4
b)

With A as given in Exercise 2.6, find the maximum value of X’ A x for x’x = 1.

Find the maximum and minimum values of the ratio x’ A x/x’x for any nonzero vectors
X' = [xq, X3, x3] if

13 -4 2
A=|-4 13 -2
2 -2 10
Show that

3 ]
C has (i, j)th entry E E a;ebercy
i=14£=1

A B
{(rxs)(sXr)(exv)

t
Hinz: BChas (¢, j)thentry 3, bexck; = dy;. So A(BC) has (7, /)th element
=

5 1 5 1
apdy; + appdy; + o+ adg = ai@(E bt’kckj) =3 3 aibeck;
=1 i=1k=1

¢=1

Verify (2-24): E(X + Y) = E(X) + E(Y) and E(AXB) = AE(X)B.
Hint: X +Y has X;; + Y;jasits (£, /)th element. Now, E( X;; + Y;}) = E(X,,) + E(Yy)
by a univariate property of expectation, and this last quantity is the (i, j) th element of

E(X) + E(Y). Next (see Exercise 2.39), AXB has (i, j)th entry z z a;e X kb j, and
by the additive property of expectation,

E(; ; ait’Xt’kbkj) =3 Ek; aieE (X ¢x) bij
€
which is the (i, j)th element of A E(X)B.

You are given the random vector X' = [X,, X,, X3, X;] with mean vector
#x = [3,2, —2, 0] and variance—covariance matrix

300
2x=

oo o
o O W
o W o
W o oo

1 -1 0 0
A=I1 1 -2 0
1 1 1 -3
(a) Find E (AX), the mean of AX.
(b) Find Cov (AX), the variances and covariances of AX.
(c) Which pairs of linear combinations have zero covariances?
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2.42. Repeat Exercise 241, but with
3111
1
2x = i ? 3 i
h 1113
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